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A generalization of the HalI-Petch relationship is proposed. The generalized relationship takes 
account of the contributions from intergrain sliding, generation of lattice dislocations, and 
influence of disclination-like defects. From this approach, a critical size corresponding to 
a maximum of the HalI-Petch size dependence is obtained. The value of the critical size essentially 
depends on the state of boundaries and it explains contradictory results for the microhardness of 
nanocrystals (NCs), since grain-boundary sliding is facilitated in unrelaxed nanocrystals and 
constrained in aged ones. 

1. Introduction 
In traditional metallic polycrystals the yield stress, ~y, 
is a structure-sensitive characteristic and at low and 
moderate temperatures it increases with decreasing 
grain size, d, according to the well-known empirical 
Hall-Petch law 

ty = to + kd -1/2 (l) 

where t0 is the friction stress of the crystal lattice and 
k is the Hall-Petch factor. A similar law is also ob- 
served for the dependence of the yield stress on the 
typical size of the cell-dislocation structure in body- 
centered cubic (b.c.c.) metals and the alloys based on 
such metals. Many theoretical and experimental stud- 
ies have been devoted to the physical interpretation of 
this dependence; the results are pretty well sum- 
marized in surveys [1-4]. For typical polycrystals 
with grain size ranging from 1 mm to 1 I~m the models 
developed are in good agreement with experimental 
data. However, further reduction of the scale of grain 
structure leads to significant deviations from the 
Hall-Petch law (Equation 1), which may result in 
a different exponent value, or a different magnitude 
and sign of the Hall-Petch factor. These distinctions 
become most apparent for the polycrystals of a new 
class that are sometimes called nanocrystals (NCs). 

Investigations on the structure and properties of 
NCs and possible methods of their production carried 
out in the last ten years [5-34] testify to the fact that 
NCs qualitatively differ from the usual coarse-grained 
polycrystals. This applies, firstly, to the interfaces 
themselves. The interfaces in unrelaxed NCs can be up 
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to 1-2 nm thick. In fact, they are the interlayers of 
a material that often has a porosity which is higher 
than that of surrounding crystallites. The grains them- 
selves, which are those domains with closely packed 
atoms, can be up to several nanometers in size. Lately, 
a comparison of the results obtained in experiments 
directly observing NCs by high-resolution electron 
microscopy (HREM) [26] with other methods - data 
X-ray [11] and neutron [19] diffraction, and the re- 
sults of studying the structure of NCs by the EXAFS 
(extended-X-rayrabsorption fine structure) method 
[22], and M6ssbauer [12] and positron [13, 14] spec- 
troscopy - allowed Wunderlich et al. [26] to establish 
that an appreciable fraction of interfaces have a highly 
distorted pre-boundary region with a lowered density 
and a somewhat elevated level of internal elastic stres- 
ses. An approximate examination of the microstruc- 
ture of palladium [26] showed that it contained about 
40 vol % of a non-distorted crystalline material, about 
25 vol % of stretched amorphous interlayers of grain- 
boundary material, 25 vol % of a material with a high 
level of internal stresses, and about 10 vol % of pores. 

The peculiarities observed in the structure of NCs, 
which are enumerated above, can influence the prop- 
erties of NCs; in particular, they can modify the type of 
the dependence of the yield stress on the grain size. 
For example, microhardness-test experiments per- 
formed with nanocrystalline Ni [9, 23], TiO2 [16, 17, 
28], Cu [20, 21, 23, 32] and copper alloys [33], Pd [20, 
21, 32], Co [23] and Fe [24] showed that only a sev- 
eral-fold increase in the yield stress, ~y, is observed for 
real materials instead of the hundred-fold increase in 
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the value of-cy that is expected from Equation 1 for 
materials with d as small as 10 nm. These experiments 
demonstrate that the value of Zo in Equation 1 can 
increase [27], and the value of k can decrease [21, 27] 
or even change sign [20, 29-31]. Jang and Koch, 
trying to find the source of the spread in the results 
they obtained, discovered that the microhardness of 
nanocrystalline iron may follow the d-  1/2 dependence 
as well as the d-a dependence proposed earlier by 
Kocks [35]. 

There are various attempts to use distinctive fea- 
tures of NCs in the literature (including their porosity, 
the mobility of grain boundaries, and the presence of 
disclinations [35-37] to account for the phenomena 
observed. The present paper aims to obtain a general- 
ized empirical analogue of Equation 1 that will allow 
for the yield characteristics of the materials of crystal- 
lite and intercrystallite layers, without dwelling on the 
particular physical processes that determine the yield 
stress in NCs, The conditions are also determined 
under which the yield stress starts decreasing with 
decreasing grain size and becomes lower than the 
friction stress in crystallites. 

2 .  R e s u l t s  
2.1. Yield s tress  of nanocrys ta l s  
Following Kocks [35], represent a nanocrystalline 
material as a composite of a crystalline matrix with 
inclusions of intercrystallite layers. The experimental 
value of the ratio of typical sizes of crystallites and 
interfaces is low enough to consider the interfaces in 
the matrix as thin plates which are chaotically placed 
and oriented. As all the possible orientations of the 
inclusions are equally probable, a medium with iso- 
tropic effective properties can be considered. Repres- 
enting the inclusions by oblate ellipsoids, the effective 
shear modulus, G, of such a composite can be ob- 
tained [38] 

(Gin + qG, ) (G , -  G=) 
G = G m +  c - -  (2) 

G~(1 + 17) 

w h e r e  G m is the shear modulus of the matrix, G~ is the 
shear modulus of the inclusion (interface) rl = 0.5 
[1 + 3/(4-5 vl)], where v~ is Poisson's coefficient of the 
inclusion, and c is the volume fraction occupied by 
inclusions (c ~ 1). 

Equation 2 was obtained under the assumption that 
the matrix and the inclusions are elastic; no reserva- 
tions were made about the ratio of their moduli. As- 
sume that the yield stress of the matrix, Zm, of the 
inclusions, z~ and the effective yield stress of the com- 
posite, Zy are linearly connected with the correspond- 
ing shear moduli 

G = Hzy, Gm = Hm'rm, GI = Hlzl(3) 

where H, Hm and H~ are dimensionless factors. Addi- 
tionally, assume that the values of T m and ~ are 
connected with the typical structure period d cor- 
responding to the NC grain size by the following 
Hall-Petch-type relationships: 

Tm ~- T,*m q- km d-m/2 (4a) 

T,! = "C* q- kid -i/2 (4b) 

where superscripts m and i are integers. 
It can easily be shown (for example, for the cube- 

shaped grains) that the volume fraction of the inclu- 
sions may be estimated as c ~ 3g/d, if the thickness of 
interfaces, 6, is much less than the distance, d, between 
the interfaces. Then substituting Equations 3 and 
4 into Equation 2 the following empirical dependence 
of the effective yield stress of the composite on the 
typical structure-size, d, is obtained 

Hm Hmz* + krad -m/2 
~ -  H m ~ -  

+ 3 (1 -- rl)H,~z* + rlH~r 5d-1 
(1 + n)H 

+ 3 1 - rlHmkmSd-{. +~/21 
1 + q~1- 

1"1 HIk lSd - i1  + i/2) 
+ 3 1 + n i l  

8(Hm)2 (z.)2 + 

(5) 

2-c* k~d -m/2 + (km)Zd - 'n  

(1 + q)HH~ z~ d + kid 1- i /2  

Ty ~ Tj ~ 

The next step is to choose the values of m and i. In this 
case one must proceed from the specific physical 
mechanism that determines the yield strength in each 
of the phases in a particular situation. Assume that ~m 
and zj are governed both by the stress in the heads of 
the dislocation pile-ups set against the matrix-inclu- 
sion boundary from the matrix side and by the stress 
of the pile-ups in the "very intergrain" layer. The latter 
pile-ups provide a mechanism of intergrain sliding. 
The typical dimensions of pile-ups of both types is 
about d. This means that values of m = i = 1 may be 
chosen to get the usual Hall-Perch law for both the 
matrix and the inclusion. 

Now consider how the quantities z*, ~*, km and k~ 
are related to each other. If the main distinction of the 
interfaces from the crystallites is the low atomic den- 
sity of the former, it seems reasonable to assume that 
z* ~ qz* and k~ ~ pkm, where q and p are dimension- 
less constants smaller than 1. Evidently, the lower the 
atomic density of the interfaces, the smaller the values 
of q and p. 

Finally, for the sake of simplicity take H ~ H~. 
Then Equation 5 can be easily reduced to the form 

q- k ind- l /z  

3 5 [1  - q ( 1  - rl + q q ) ] ( ' ~ * ) 2 d  + [ 2  - q ( 1  - i"1 + r iP)  - p ( 1  - n + rlq)]z*kmd 1/2 
(6) 
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l + r l d  

§ 

qz*  d + pkm dl/2 

[1 - p(1 - n + np)](k%) 
qz*d  + pkmd t/2 



or  

- 0 

(8) 

3q 2 -- 1 
Ty = ~'@m + km d-1/'2 + z*6d -1 

2 q 

3q 2 -- 1 
+ km 6d- 3/2 (7b) 

2 q 

Evidently, when such a dependence is plotted in 
r-d 1/2 co-ordinates, the straight line in Equation 
1 will remain straight only at large d or else as q ~ 1. 
At q < 1 its slope will gradually decrease with decreas- 
ing grain dimension down to some critical size, dc,, 
where the effective Hall-Petch factor will change sign. 
The critical size, dc~ can easily be found from the 
condition ~'Cy/~d - U 2 =  0. This equality can be re- 
duced to the following equation 

2 r *  -12/ 2 q 1 (d-U2)  2 + 
---3kin dm 91 - q26 

60 

Solving this equation 

( d c l ) _ u 2  "C*m l (  2q )1/2 

3km q- 3 6(1 q2) 

((Tn*,)2~ 1 - -  q2 ~1/2 

x \2(kin) 2 q + 1 J 
(9) 

Substituting the usual values for parameters 
~*/km ~ 1 + 100 mm-  1/2 and 8 ~ 1 nm the following 
approximate expression for dc)/2 is obtained 

"r 1 (  2q ) U2 

('c*)2(28)1/2(1 -- q2) 1/2 
4- 12(kra)Z q 

(lO) 

Thus, the following estimate for the critical grain size, 
dc~, is obtained 

96(1 - q2)/2q 
dc~ ,,~ (11) 

1 - 2 (  ~ ( I  - ' 2q q2)f ,2  ('I:~m/km) 
\ 

Fig. 1 presents the family of curves, dc, (q), calculated 
according to Equation 11 at 6 = 1 nm for Ti [2], Cu 
[20], Fe [4], Ni [3] and Ag [43]. The corresponding 
values of the ratio r * / k  m are 55, 26, 8, 4 and 4 mm -1/;, 
respectively. The dashed line is calculated according 
to the approximate formula dc, ~ 9 6 ( 1 - q 2 ) / 2 q ,  
which may be used for estimating dcl in practically 
any material. At q = 0.2, this expression yields the 
grain size dc~ ~ 228 = 22 nm, which corresponds to 
the volume fraction of boundaries c ~ 0.12. 

Equation 7 can be used to determine the critical 
grain size, dc2, at which the yield stress of a composite 
becomes equal to the friction stress in the matrix, 
i.e. ~y - r* = 0. This critical size turns to be equal to 

31 _ q 2  
dc2 ~2 q 8 ,~ dc~/3 

A t 6 =  l n m a n d q = 0 . 2 t h e n d c ~ 7 n m .  
Equation 7 turns out to agree pretty well with the 

different and apparently contradictory experimental 
data. For example, compare the results of our calcu- 
lations with the data from Chokshi et al. [20] and 
Jang and Koch [27]. Rewriting Equation 7 in terms of 
the microhardness and substituting the values of 
H*  and km corresponding to coarse-grained Cu [20] 
and Fe [4] the families of curves, H(d-1/2), are ob- 
tained (see Fig. 2a, b) for different values of q. The 
results given in [20] are seen to be in good agreement 
with the descending portion of the curve H(d-1/2), the 
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Consider in greater detail the third term on the right- 
hand side of Equation 6 which is accounted for by the 
fact that an interface is treated in our consideration as 
an interlayer of finite thickness with its own elastic 
and plastic characteristics. Taking Poission's coeffi- 
cient, rh, to belong to the interval 0.2-0.4 gives the 
following estimate for the value of rl: 1 4 q ~< 1.25. 
For simplicity, take 1"1 ~ 1. Hence, the atomic density 
of boundaries may amount for up to 70% of the 
ordinary density of the material [41]. At such densities 
the main mechanical properties of the material (the 
Young's modulus, the yield stress, the fatigue stress) 
are known to be several times worse than the charac- 
teristics of the compact body [42]. Therefore, one can 
estimate q ~ p ~ 0.2. 

For these values of parameters rl, q and p the third 
term in Equation 6 turns out to be positive and is 
subtracted from the value of rm. As expected, the 
low-density interlayers lower the yield stress of 
the composite. Using the above estimates for 1"1, 
Equation 6 can be expressed in its simplest form 

"l:y = ( 1 : * +  kmd-1/2)(1 1--q q23~)2 

(7a) 

0.2 ():6 
I 

0.4 

Figure 1 The dependence of the critical size of a NC grain, dc, on 
the parameter q for: (1) Ti; (2) Cu; (3) Fe, Ni, Ag, ( - - - )  is an 
approximate curve that may be applied to any material. Parameter 
q was put in correspondence with the atomic density of boundaries 
using the data from [42]. 
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Figure 2 The dependence of the microhardness on the grain size at different atomic densities of boundaries of nanocrystalline: (a) Cu, and 
(b) Fe. This quantity is characterized by parameter q. The figures on the curves denote the values of this parameter. (---) straight lines drawn 
through the experimental points (O) [20] and (~) [27]. 

difference from the calculated values amounting up to 
25-45% at q ~ 0.2 (see Fig. 2a). A qualitatively differ- 
ent increasing curve H(d -1/2) [27] fits well between 
the calculated curves for q = 0.8 and q = 0.9 (Fig. 2b). 
The difference in dependences of H on d-  1/2 obtained 
in [20] and [27] seems to be caused by the fact that 
the measurements were carried out with samples in 
different stages of relaxation. The measurements in 
[20] were performed for a nanopowder-based, as- 
compacted, copper sample. The boundaries of the 
nanocrystallite grains in the sample thus produced 
correspond to the surface of the as-synthesized copper 
particles in the pre-compaction sample, Evidently, 
such a procedure of producing a nanocrystalline ma- 
terial predetermines the low atomic density of bound- 
aries (which increases as the internal stresses in the 
sample relax). The authors of [27] measured the 
microhardness of separate polycrystalline particles 
(with sizes ~< 1 gm) consisting of nanocrystallites, In 
this case interfaces are formed from the walls of dislo- 
cation cells generated during the ball-milling process. 
It is clear that such a procedure produces nanocrystal- 
line iron in which the atomic density of boundaries is 
significantly higher than in the former case (according 
to Fig. 2b it should differ from the normal value by 
about 5-7%). 

Therefore, we have shown that dependences of "Cy 
and H on d-  1/2, for sufficiently small grains, can differ 
from the Hall-Petch relationship, Equation 1, but still 
be consistent with experimental data. The contradic- 
tions arising on comparison of experimental results 
obtained by different authors can b e  resolved in the 
framework of the approach proposed. The type of 
deviation from the Hall-Petch law is determined by 
the atomic density of the interfaces and the range of 
nanocrystallite sizes under study (d ~< dc~). 
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2.2. Gene ra l i zed  H a l I - P e t c h  re la t ionsh ip  
The approach used above led to the dependence of the 
yield stress on three terms, in Equation 7b, differing in 
the values of the exponents (d- 1/2, ~ d-  1, ~ d-3/2) 
and in the values of constant factors in these terms. 
The most general relation between the yield stress and 
the grain size can, probably, be written in the follow- 
ing form: 

zy = "Co + k(~ + ~ k(")d -";2 (12) 
n = l  

This expression is a generalization of the Hall-Petch 
law which contains the terms accounted for by the 
different physical processes influencing the yield stress. 
The logarithmic term corresponds to the contribution 
to the yield stress of unrelaxed NCs by disclinations 
[37]. 

In each particular instance, depending on the ma- 
terial composition, the range of grain sizes, the struc- 
ture and properties of boundaries, the dislocation 
structure, the temperature of testing, the hydrostatic 
stress, etc, one or several terms can come to the fore- 
ground. In this case the influence of the other terms 
(which can be eliminated from the expression by set- 
ting the corresponding coefficients, k ("), to zero) is 
negligible. For example, for typical coarse-grained 
polycrystals it is possible to take k(1)= k, and k (~ 
k ~2~, k ~3) . . . . .  0, while in the Equation 7b, pro- 
posed above to describe the properties of NCs, 
k (1) = k m ,  k (2) = ( - -  3/2)(1 - q2/q)"c* 8, k (3) = ( - 3/2) 
(1 - q2/q) kmS, and k(% k (r k (5) . . . . .  0. 

3. Discussion 
In setting out the results of this study mention was 
deliberately avoided, whenever possible, of possible 



mechanisms that lower the yield stress of NCs in 
comparison to the value expected from Equation 1. 
This was done because the particular causes of the 
high deformability of interfaces that brings about the 
decrease in hardness of NCs played no important role 
in deriving the main results, Equations 5 and 6. How- 
ever, these causes become essential in the evaluation of 
the parameters m, i, q and p as well as for clarifying the 
physical meaning of the terms in the generalized ex- 
pression, Equation 12. Below are some remarks on this. 

The first concerns the experimental procedure of the 
microhardness test. As a rule, such measurments lead 
to an abrupt increase of local stresses near the inden- 
ter, which can initiate intercrystallite slipping or 
boundary migration leading to the local coarsening of 
the structure (exaggerated recrystallization) [44]. 
Such a situation is schematically presented in Fig. 3a 
and b. 

]n the former case an important factor is the poros- 
ity which can amount in NCs to 10-15 vol. percent 
when averaged over all of the volume. At such values 
of porosity in boundary regions, intergrain slipping 
should become the most efficient channel of stress 
relaxation [31] (Fig. 3a). This seems all the more 
probable as the typical time of grain slipping, for 
sufficiently small grains, can be shorter than the time 
required for the generation of dislocations inside the 
grain or for relaxation via the diffusion-creep mechan- 
ism. Besides, grain slipping can be present in NCs with 
small porosity [31], provided the boundaries are not 
relaxed too much. It should also be mentioned that 
slipping can be retarded by the residual stresses that 
persist in the volume of a NC after compaction. The 
hydrostatic local stresses under an indenter can also 
lock this channel of the relaxation of tangential stres- 
ses. Boundary dislocations can also provide the mech- 
anism of such slipping. Theoretical calculations [45, 
46] show that the individual lattice glissile disloca- 
tions are not stable in a polycrystal with grain size less 
than some characteristic value d*, agreeing with ex- 
periments [33]. Only dislocation dipoles were ob- 
served [26] in not-fully-relaxed NC grains [26]. 
Relaxation of internal stresses in NCs may lead to the 
formation of pile-ups of boundary dislocations which 
raise the yield stress of the NCs. It was for this reason 
that the value of the exponent i was chosen to be i = 1. 
However, the contribution of boundary dislocations 
to the value of k will be smaller than ordinary lattice 
dislocations due to the smaller magnitude of the 
Burgers vector of boundary dislocations. The poros- 
ity-assisted slipping seems to be capable of providing 
the values of parameters q and p (which determine the 
ratio of~* and kin, and the ratio o f r*  and k~) that lead 
to the negative contribution of the boundaries to the 
yield stress (7). 

However, cases have been reported (see, for 
example, [47] ) when the residual porosity is too small 
( <  10%) to facilitate the slipping processes in an 
appreciable volume near the indenter. Then, exag- 
gerated recrystallization [48] may be observed in the 
regions where the hydrostatic component of local 
stresses is too small to suppress the creep of disloca- 
tions in the boundaries, i.e. to suppress the boundary 
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Figure 3 Models of deformation phenomena under an indenter tip in 
NCs: (a) densification phenomena resulting from intercrystallite 
sliding. Solid lines denote voids, (b) stress-induced boundary migra- 
tion in the region of very intense local stresses under the indenter, 
and (c) generation of dislocations by interface sources when bound- 
ary migration and sliding phenomena are suppressed. 

migration (see Fig. 3b). Such regions have higher con- 
centrations of non-equilibrium vacancies [49], which 
can decrease the values of parameters q and p. In its 
turn, the fact of the creep of boundary dislocations 
makes the assumption i = 1 reasonable. In this case 
the values of q and p tend to 1 in high-purity 
dense NCs. 

If grain-boundary slipping is blocked by impurity 
atoms, generation of lattice dislocations becomes the 
main relaxation process. In this case as q, p ~ 1 and 
i = m = 2 the well-known dependence first proposed 
by Kocks in 1-35] for other models is obtained; and the 
indenter cannot produce any noticeable imprint, since 
the dislocations generated return to their sources. This 
is very similar to observations in experiments on 
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nanoindentation: the smaller the indentation depth, 
the harder the material [50]. Besides, in this case the 
material was shown to demonstrate the highest hard- 
ness when the indent trace is not accompanied by the 
formation of dislocation rosette patterns. 

The presence of the logarithmic term in Equation 12 
can be associated with the pentagonal symmetry axes 
[51] or with the grain-boundary disclinations 
[36, 37]. A similar dependence may be produced by 
the misfit dislocations uniformly distributed over the 
boundary. The terms with higher powers of 
d ( ~ d -n/2, n > 2) may arise when averaging the con- 
tributions from grains and boundaries, as was the case 
with Equation 7 for i = m = 1. In addition, they may 
be accounted for by the singularities of the internal 
stress field whose scale is commensurable with the 
grain size. 

Since the porosity of NCs depends on the temper- 
ature conditions, the coefficients in the generalized 
Hall-Petch relationship should also depend on the 
temperature; furthermore, in the presence of the phe- 
nomena of interface reconstruction and boundary 
migration these coefficients are noticeably time-de= 
pendent. The character of the temperature dependence 
of the NC yield stress is mainly determined by the 
nature of defects and the particular deformation 
mechanism. 

In [161 as-compacted rutile NCs were shown to 
possess a Vickers microhardness higher than that of 
the coarser-grained samples for the whole temperature 
range. The fact that the observed microhardness in- 
creases with temperature is probably caused by den- 
sification processes in porous compacts. 

Dense NCs behave differently. In [24] the variation 
of the microhardness of Pd NCs with temperature was 
investigated. The microhardness of nanocrystalline 
samples tended to decrease at small annealing temper- 
atures, ~ 0.26Tm in contradiction to the coarse-grained 
samples. The ayeraged hardness of nanocrystalline 
palladium decreased slowly up to temperatures of ap- 
proximately 0.55Tm and then abruptly fell off (volume 
diffusion mass-transfer is responsible for the processes 
of high-temperature exaggerated recrystallization). 

Such a two-stage degradation of the microhardness 
of NCs is accounted for by the presence of different 
processes near the boundaries. The first stage can be 
caused by the ageing of boundaries [46], and the exit 
of dislocations generated during compaction into 
interfaces. The second stage corresponds to boundary 
migration that, however, is of a typical character 
(without the contribution of non-equilibrium pro- 
cesses). 

In conclusion, it must be stressed that in calculating 
the effective yield stress it does not suffice to reveal the 
most important physical processes influencing the 
yield stress inside a grain and its boundaries. Of equal 
importance is the need to properly superimpose these 
mechanisms in calculations. 

4. C o n c l u s i o n  
An expression describing the dependence of the yield 
stress on the grain size was proposed. The dependence 
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obtained is in good agreement with the data given in 
the literature (see the references given in the text). It 
was shown that for unrelaxed boundaries with low 
atomic density there is a critical grain size correspond- 
ing to a maximum of the curve, zy(d-1/2), which is 
confirmed by observations of negative values of the 
Hall-Petch factor. This critical grain size strongly 
depends on the quality of the boundaries and it in- 
creases with increasing boundary atomic density and 
is only weakly dependent on the material of the 
nanocrystallites. At low atomic densities in bound- 
aries, the c u r v e  Ty(d -1 /2)  increases and is close to 
linear. However, it has a higher effective value of t0 
and a smaller coefficient k compared to the 
Hall-Petch law for coarse-grained polycrystals. 
Therefore, the deviations from the Hall-Petch law for 
the new curves proposed are determined by the qual- 
ity of the interfaces and the range of nanocrystallite 
sizes under study; i.e. the state of the boundaries, and 
the density and grain size are important character- 
istics of NCs. 

A generalized Hall-Petch relationship was pro- 
posed, Equation 12, containing terms corresponding 
to the different physical processes that determine the 
yield stress of polycrystals. Consideration was given to 
the terms corresponding to intergrain slipping, gen- 
eration of lattice dislocations and the action of 
disclination-like defects. 
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